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Introduction, aim

CAVEAT scheme: [Addessio, Baugardner, Dukowicz, Johnson, Kashiwa,
Rauenzahn, Zemach, 1990]

Compatible-Hydro scheme: [Caramana, Burton, Shashkov, Whalen 1998]
GLACE scheme: [Després, Mazeran, 2003]
EUCCLHYD scheme: [Maire, 2004, 2007]

Notations:

“VNR” (Von Neumann—Richtmyer, 1D) = “Wilkins” (2D)
= “SGH" (Staggered Grid Hydro) = “STS"” (Space and Time Staggered)

“CSTS" = Conservative Space and Time Staggered
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Cea Introduction, aim

. ‘ Density profiles STS scheme on
plane Noh's test:
’ ‘ =~ 5% error on density jump and
‘ propagation velocity

However:

time and space staggered schemes are extremely practical and widely used
([von Neumann—Richtmyer 1950], [Wilkins 1964], [Pracht 1975]...)

yet, little research effort spent on such schemes (hopeless? old fashioned?
focus on Q & anti-hourglassing?...)

there is no theorem or proof that conservativity cannot be achieved

and hints are actually that total energy can be exactly conserved ([Trulio &
Trigger 1960], [Burton 1991])
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tea Introduction, aim

. Write a modified STS scheme with following properties:
same calculation structure as the STS (1, 2, or 3D)
second order in time and space as the STS
exactly conservative in mass, momentum, and total energy
under all conditions (regardless of time step changes)
with a kinetic energy defined by a positive definite quadratic form of velocity
(rules out Trulio & Trigger's Ec =, m,'u7+1/2u7_1/2)

and, if possible, second order entropic (bonus, demands energy conservation)

1. Basic tests of impact on:
energy conservation
jump conditions
constraints on time step

mesh behavior in 2D
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CQ_ZI Outline

Continuous system of equations

“Historical” space and time discretization

CSTS scheme

® Conservative Space and Time Discretization
® Kinetic energy equation
® [nternal energy equation
® Numerical example: Noh 1D
® Total energy conservation
® Rewriting of the internal energy

® Entropy condition

® Order one artificial viscosity
® Order two predicted—corrected artificial viscosity
® Numerical example: Noh 1D

® Comments on the effective energy of the system

Numerical results

® Sod
e Noh 2D
e Kidder
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CQ_ZI QOutline

Continuous system of equations

“Historical” space and time discretization

A. Claisse | CEA | PAGE 5/39



CQZI Local continuous system of equations

We solve compressible Euler's equations:

dx

proial semi-Lagrangian configuration (1a)

dp .

P V-u mass conservation (1b)
du .

P = —V(p+q) momentum conservation (1c)
de . .

P = —(p+9q)V-u internal energy evolution (1d)

p = EOS(p, e) system closure (1e)

where u is velocity, p density, p pressure, g artificial viscosity and e internal energy
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C22a  “Historical” space and time discretization

System (1) writes:

n+l _ _n n+1/2 n+1/2

Xp T =x,+up, At / (2a)

mitt = m" (2b)

n+1/2 n—1/2y _ n AV |n At"TY2 L ppn—1/2 5
mp(up —up, )= Z (p+q)l o, ! 2 (20)
ceC(p)
1
ec"+1—eg — _(P+C7)2+ /2 < 1 L) (2d)
Atn+1/2 Atn+1/2 pitT Pl
1 1 1
pItt = EOS(pl*, el 1) (2¢)
where:
AIrHl/Q N
c cell labels, p node labels = X
i+1
At"Y/2 time step between t" and "1
L, n+l12
g)‘{: |" corner vectors Ui
ntl/2 1 1
pe "= 3(pl+pl) ) o:le. Ply
i
_ 1
mp= D ety me ion an
ceC(p)

A. Claisse | CEA | PAGE 7/39



CQ_ZI QOutline

CSTS scheme
® Conservative Space and Time Discretization

® Kinetic energy equation
Internal energy equation
Numerical example: Noh 1D
Total energy conservation

Rewriting of the internal energy
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CQZI Conservative Space and Time Discretization

Consistency demands that action A (= time inte-
gral of energy) be built from kinetic and internal
energies discretized over the STS grid:

B =37 pmp(up ™Y
P

A= +AtRET
n

This is a form of “space-time finite volumes approach” (second-order accurate)

A least action variational principle yields the only possible momentum
equation: turns out be identical to the original STS scheme

Now, from there, total energy conservation can be deduced so as to be
compatible with the discretization of action: turns out there is only one
possible scheme (for the given formula of E)
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Conservative Space and Time Discretization

The momentum equation:

+1/2 —1/2 V. n+1/2 n—1/2
mp(up™? —up ™) = 37 (p+a)l g " A58
ceC(p)

multiplied by % (u‘",Jrl/2 + ugfl/Z), we obtain the kinetic energy equation:

n+1 n—1
Tmp[(up™?)? — (up™ %))

1 1
rpr+ /2., =12

= 3 (prangE|n e armaes
c Xp
ceC(p)

®3)
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Cea  Conservative Space and Time Discretization

We use the same “energy tally” argument as [Burton, 91]:

internal energy equation must match the kinetic energy equation
— only flux terms are left

right hand sides of kinetic and internal energies must be opposite up to both
space and time index rearrangements

me(el* — €f)
n+1 n +1
= Y ez B (o @]y aer
pEP(c)
n 1 -1 _
+ P+l (T - Ty (A - Ay (a)
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Cea  Conservative Space and Time Discretization

We use the same “energy tally” argument as [Burton, 91]:

internal energy equation must match the kinetic energy equation
— only flux terms are left

right hand sides of kinetic and internal energies must be opposite up to both

space and time index rearrangements

me(el™! —ef)

n _
4 %(P + q)g g)\(/; ) (ug+1/2 _ U,’; 1/2) (Atn+l/2 _ Atnfl/Z) (4)
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Conservative Space and Time Discretization

We use the same “energy tally” argument as [Burton, 91]:

internal energy equation must match the kinetic energy equation
— only flux terms are left

right hand sides of kinetic and internal energies must be opposite up to both
space and time index rearrangements

me(el™! —ef)

n 1 —1 _
i+ @l Ge | - —upT I (A - A (a)

- rearrangement of the remaining terms of (3)
- compatible with causality: no time indices beyond n + 1
- small and cancels for constant At
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Conservative Space and Time Discretization

The internal energy equation (4) differs from its version in the STS schemes by 3
important features:

artificial viscosity is now time centered as pressure (previously suggested by
[Trulio & Trigger, 62])

the volume variations which produce the pressure work are described by the
scalar products of corner vectors and displacements: gxc “up
P

a novel corrective term is required when the time step fluctuates

Moreover, there is a minor additional computational time.
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C22 Conservative Space and Time Discretization

Comparison between: STS, and cell-centered (GLACE order 2) schemes

Density profiles at final time t = 0.6, CFL= 0.5

better shock level better shock propagation velocity
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Conservative Space and Time Discretization

Adding (3) and (4) and summing over cells and nodes yields
5 5 7] ¢ e
P

- Z Z _% [(p+ q)n+1 Ve |n+1 n+1/2At,,+1/2
P ceC(p)

ndVg|n

~(p+ )i G| uy e

where the right hand side appears to be a flux term in time
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Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

En—1/2 _ En_—1/2 n 1/2 Z 2mp( n— 1/2

Tot. Kin. Int

_1 n—1/2
+Z[mces+(p+q)z > Gl e
c pEP(c)
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Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

—1/2 —1 2 1/2 1/2
E;ot_/ = E;in. / Irr,lt / E > mp un / positive definite quadratic form

_1 n—1/2
+Z[mces+(p+q)z > Gl e
c pEP(c)
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Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

—1/2 1 2 1/2 -1/ 2
E;ot / E;m / IrrT\t / E 5 mp u positive definite quadratic form

: _1 n—1/2
+Z{mces+(p+q>z SO Gl up A
c pEP(c)

internal energy backward reconstructed at tn—1/2
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Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

—1/2 1 2 1/2 -1/ 2
E;ot / E;m / IrrT\t / E 5 mp u positive definite quadratic form

1 n—1/2
+> {mceg'f‘(P‘f‘ Q)L > G| up AL
¢ pEP(c)

internal energy backward reconstructed at tn—1/2

or

n=12 _ -n _ n n o __ n
ETot. - ETot. - EKin. + Elnt. - Z mcec
c

n Apn—12
D I D S L
P ceC(p)
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CQZI Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

—1/2 1 2 1/2 —1/2
E;ot./ E;m / IrrT\t / E 2mp u )2 positive definite quadratic form

1 n—1/2
+> {mceg'f‘(P‘f‘ Q)L > G| up AL
¢ pEP(c)

internal energy backward reconstructed at tn—1/2

or
n=12 _ -n _ n n _E: n
ETot. - ETot. - EKin. + Elnt. - mcec
c

_ _ n—1/2
30 [l R S (o et
P ceC(p)

- non positive definite quadratic form

- kinetic energy forward reconstructed at t"
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-

Conservative Space and Time Discretization

The conserved numerical energy can thus be written as:

n—1/2 1/2 1/2 1/2
ETot 2 — = Enn / En / E 2mp(u" /2 ) positive definite quadratic form

_1 n—1/2
+Z[mces+(p+q)z S Gl er
c peP(c)

internal energy backward reconstructed at tn—1/2

internal energy, backward reconstructed to half-integer time indices

n—1/2 aV.|n n—1/2 pen—1/2
meel? = mcel + (p+ q)" > el up f2ad
pEP(c)

evolution equation of internal energy:

+1/2, n—1/2 1 -1

ntl/2  n—1/2 oV n  (up "up” TY) (A2 aen—1/2

me(ec /765 /): § : *(PJFq)ZaTﬂ : 2 ( 2 :
pEP(c)
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C2a Outline

CSTS scheme

® Entropy condition

® Order one artificial viscosity
® Order two predicted—corrected artificial viscosity
® Numerical example: Noh 1D
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CQa Entropy condition

From internal energy evolution equation of egfl/z, entropy condition de + pdV > 0
becomes

1 —1/2
—qr 3D 2. (P up ™)
dc Oxp 2

pEP(c)

>0 for any cell ¢

— order two and implicit

Order one in time approximation (usual STS schemes):
g7 will be an explicit clipped functional of {up_ /2} instead of { (up "+1/2 uy 1/2)}

Qe(fup™)) i Qe({u ) 3 BEITup <0

P(c)
Q n—1/2 _ pe
(o) i Qe({up ) X Bl w0
pEP(c)

Q. can be any convenient sensible formula (scalar, tensor, TVD, hyper-viscous. . .)
A. Claisse | CEA | PAGE 24/39



62 Second order entropy condition

no guarantee that order one explicit g complies with entropy condition
what about singularities and large (variable) At?

significant improvement can be obtained with predicted—corrected g which
requires computing the momentum equation twice:

*n+1/2 n—1/2y n—1/2y OV, |n AtMTY2 4 an—1/2
mp(up" g = ST (gl ) G| A AT
c€C(p)

where gl /% = QC({ugfl/z}) predicted (5a)
+1/2 —1/2 AV, n+1/2 n—1/2
o) = S (o qp) | e s 2

ceC(p)
where qQ:gc({%(u;"+1/2+ u;fl/Q)}) corrected (5b)
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Second order entropy condition

to preserve energy conservation a correction in the el equation is required
n+1 n
me(eltt — ef)

= 3 (et g g%

pEP(c)

n+1

GIGER Il RN

qr 2y 2y o o

N

77(qc

+ %(P + q)g g)\(/: }n . (ug+1/2 _ un 1/2) (Atn+1/2 Atnfl/Z) (6)

The e expression now does not involve g7*! (replaced by available qc+1/2)

n—1/.

in this case, ec

2 equation is not modified since this equation uses only
corrected g

n+1/2,  n—1/2 1 _1
+1/2 —1/2 aV, (u 20 ) (At 2 an—1/2
me(el ™ el = 3 —(pn+ D)oe|n. Lo ( x )
pEP(c)
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CQZI CSTS scheme

This CSTS scheme (5) and (6) (with predicted-corrected artificial viscosity) is now:

fully conservative in momentum and total energy
second-order accurate in entropy production, and

retains the locally implicit structure of original STS schemes (VNR or Wilkins)
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CQZI Second order entropy condition

Influence of CFL coefficient on STS and CSTS ( and with pred-corr q):
CFL= 0.6
45 T
STS ——
CSTS ——
CSTS with predcorr
a4 R analytical solution 4
\
35 ‘ ,
3 i
z
g 25 ,
2 g
15 | “ —
l\
s
0 0.05 0.1 0.15 0.2 0.25 0.3

A. Claisse | CEA | PAGE 28/39



Influence of CFL coefficient on STS and CSTS (

éTS —
CSTS ——
CSTS with predicorr
analytical solution
2
3
e
g
S
0 & L L L L L L E|
0 0.05 0.1 0.15 0.2 0.25 0.3
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CQZI Second order entropy condition

Influence of CFL coefficient on STS and CSTS ( and with pred-corr q):
CFL=0.83
T T
STS ——
45 CSTS —— +
CSTS with predicorr
analytical solution
4 1 4
35 F —
sl ]
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CQZI Second order entropy condition

Influence of CFL coefficient on STS and CSTS ( and with pred-corr q):

Variable CFL (0.5 and 0.1)
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ce_a QOutline

CSTS scheme

® Comments on the effective energy of the system
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CQZI Comments on the effective energy

el on one hand:

is effectively calculated by the scheme
is used for pressure calculation (EOS)
is not associated with a positive quadratic form of kinetic energy

does not enforce entropic conditions

e2‘1/2 on the other hand:
is not calculated by the scheme
is not used for pressure calculation (EOS)

is associated with a positive quadratic form of kinetic energy

does enforce entropic conditions
Both definitions are consistent up to the accuracy order of the scheme:

n—1/2

e=e"+O(Ax?) = & + O(Ax?) at given CFL condition
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ce_a QOutline

Numerical results

® Sod
e Noh 2D
e Kidder
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C2Aa Numerical results

From now on, all results for CSTS scheme use predicted—corrected artificial
viscosity

Linear artificial viscosity active in both expansion and compression: gq; = 0.5

Quadratic artificial viscosity active in compression only: g = WTH
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C2Aa Numerical results

Density profiles at final time t = 0.2, CFL = 0.25  Evolution of total energy
(STS and schemes)

for scheme
o
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C2Aa Numerical results

Computation of the scheme’s order on the density profile

10"
3 meshes:
[20 x 20], [40 x 40], [80 x 80]
gm"* F — § 2
R —_ CSTS without viscosity (order = 2.0044) EL2 (p ) - A’D
— CSTS with viscosity (order = 0.73) c
— STS without viscosity (order = 2.0076)
— STS with viscosity (order = 0.731)
o
AP = (ptheo - pexp)
10°
100

10
number of cells
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Cea Conclusion and perspectives

The CSTS scheme is:
conservative for total energy
only possible extension of usual STS schemes
second order for the entropy condition
Simple numerical tests show:
better shock capture (level and propagation)
improved 2D robustness
improved CFL margin

reduced additional computational time: here 1% and 28% (without and with
pred/corr, no Newton on EOS)

to be submitted soon P. Le Tallec
stability (CFL) analysis
tests on complex EOS (shock separations. . .)

other physics and numerics: ALE, 2D axisymmetric, elasticity, chemical
reaction. . . A. Claisse | CEA | PAGE 39/39



